Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/10037
Назив: On the Roter Type of Chen Ideal Submanifolds
Аутори: Deszcz, Ryszard
Glogowska M.
Petrović-Torgašev, Miroslava
Verstraelen L.
Датум издавања: 2011
Сажетак: Chen ideal submanifolds Mnin Euclidean ambient spaces En+m (of arbitrary dimensions n ≥ 2 and codimensions m ≥ 1) at each of their points do realise an optimal equality between their squared mean curvature, which is their main extrinsic scalar valued curvature invariant, and their δ-(= δ(2)-) curvature of Chen, which is one of their main intrinsic scalar valued curvature invariants. From a geometric point of view, the pseudo-symmetric Riemannian manifolds can be seen as the most natural symmetric spaces after the real space forms, i. e. the spaces of constant Riemannian sectional curvature. From an algebraic point of view, the Roter manifolds can be seen as the Riemannian manifolds whose Riemann-Christoffel curvature tensor R has the most simple expression after the real space forms, the latter ones being characterisable as the Riemannian spaces (Mn, g) for which the (0, 4) tensor R is proportional to the Nomizu-Kulkarni square of their (0, 2) metric tensor g. In the present article, for the class of the Chen ideal submanifolds Mn of Euclidean spaces En+m, we study the relationship between these geometric and algebraic generalisations of the real space forms. © 2011 Springer Basel AG.
URI: https://scidar.kg.ac.rs/handle/123456789/10037
Тип: article
DOI: 10.1007/s00025-011-0109-x
ISSN: 1422-6383
SCOPUS: 2-s2.0-79955051889
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа


Број преузимања


Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
  Ограничен приступ
29.86 kBAdobe PDFСличица

Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.