Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/10111
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorWang, Jianfeng-
dc.contributor.authorBelardo, Francesco-
dc.contributor.authorHuang Q.-
dc.contributor.authorBorovićanin, Bojana-
dc.date.accessioned2021-04-20T14:53:46Z-
dc.date.available2021-04-20T14:53:46Z-
dc.date.issued2010-
dc.identifier.issn0012-365X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/10111-
dc.description.abstractIn this paper, we first give an upper bound for the largest signless Laplacian eigenvalue of a graph and find all the extremal graphs. Secondly, we consider the second-largest signless Laplacian eigenvalue and we characterize the connected graphs whose secondlargest signless Laplacian eigenvalue does not exceed 3. Furthermore, we give the signless Laplacian spectral characterization of the latter graphs. In particular, the well-known friendship graph is proved to be determined by the signless Laplacian spectrum. © 2010 Elsevier B.V. All rights reserved.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceDiscrete Mathematics-
dc.titleOn the two largest Q-eigenvalues of graphs-
dc.typearticle-
dc.identifier.doi10.1016/j.disc.2010.06.030-
dc.identifier.scopus2-s2.0-79952988936-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

422

Downloads(s)

11

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.