Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/10234
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorKadelburg Z.-
dc.contributor.authorPavlovic, Mirjana-
dc.contributor.authorRadenovíc S.-
dc.date.accessioned2021-04-20T15:13:09Z-
dc.date.available2021-04-20T15:13:09Z-
dc.date.issued2010-
dc.identifier.issn0898-1221-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/10234-
dc.description.abstractIn the first part of this paper we generalize results on common fixed points in ordered cone metric spaces obtained by I. Altun and G. Durmaz [I. Altun, G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rend. Circ. Mat. Palermo, 58 (2009) 319-325] and I. Altun, B. Damnjanović and D. Djorić [I. Altun, B. Damnjanović, D. Djorić, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett. (2009) doi:10.1016/j.aml.2009.09.016] by weakening the respective contractive condition. Then, the notions of quasicontraction and g-quasicontraction are introduced in the setting of ordered cone metric spaces and respective (common) fixed point theorems are proved. In such a way, known results on quasicontractions and g-quasicontractions in metric spaces and cone metric spaces are extended to the setting of ordered cone metric spaces. Examples show that there are cases when new results can be applied, while old ones cannot. © 2010 Elsevier Ltd. All rights reserved.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceComputers and Mathematics with Applications-
dc.titleCommon fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces-
dc.typearticle-
dc.identifier.doi10.1016/j.camwa.2010.02.039-
dc.identifier.scopus2-s2.0-77950909784-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

463

Downloads(s)

12

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.