Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/10582
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorLiu J.-
dc.contributor.authorGutman, Ivan-
dc.contributor.authorMu Z.-
dc.contributor.authorZhang, Yusen-
dc.date.accessioned2021-04-20T16:07:41Z-
dc.date.available2021-04-20T16:07:41Z-
dc.date.issued2012-
dc.identifier.issn0096-3003-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/10582-
dc.description.abstractThe Wiener index W is the sum of distances between all pairs of vertices of a connected graph. Recently, q-analogs of W were conceived, motivated by the theory of hypergeometric series. In this article formulas are obtained for computing the q-Wiener indices of some compound trees. These generalize expressions, earlier known to hold for W. © 2012 Elsevier Inc. All rights reserved.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceApplied Mathematics and Computation-
dc.titleQ-Wiener index of some compound trees-
dc.typearticle-
dc.identifier.doi10.1016/j.amc.2012.03.048-
dc.identifier.scopus2-s2.0-84860427349-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

871

Downloads(s)

15

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.