Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/11106
Пун извештај метаподатака
Поље DC-а | Вредност | Језик |
---|---|---|
dc.rights.license | restrictedAccess | - |
dc.contributor.author | das, kinkar | - |
dc.contributor.author | Gutman, Ivan | - |
dc.contributor.author | Milovanović I. | - |
dc.contributor.author | Milovanovíc E. | - |
dc.contributor.author | Furtula, Boris | - |
dc.date.accessioned | 2021-04-20T17:30:50Z | - |
dc.date.available | 2021-04-20T17:30:50Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 0024-3795 | - |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/11106 | - |
dc.description.abstract | © 2018 Elsevier Inc. Let G=(V,E) be a simple graph of order n and size m, with vertex set V(G)={v1,v2,…,vn}, without isolated vertices and sequence of vertex degrees Δ=d1≥d2≥⋯≥dn=δ>0, di=dG(vi). If the vertices vi and vj are adjacent, we denote it as vivj∈E(G) or i∼j. With TI we denote a topological index that can be represented as TI=TI(G)=∑i∼jF(di,dj), where F is an appropriately chosen function with the property F(x,y)=F(y,x). A general extended adjacency matrix A=(aij) of G is defined as aij=F(di,dj) if the vertices vi and vj are adjacent, and aij=0 otherwise. Denote by fi, i=1,2,…,n the eigenvalues of A. The “energy” of the general extended adjacency matrix is defined as ETI=ETI(G)=∑i=1n|fi|. Lower and upper bounds on ETI are obtained. By means of the present approach a plethora of earlier established results can be obtained as special cases. | - |
dc.rights | info:eu-repo/semantics/restrictedAccess | - |
dc.source | Linear Algebra and Its Applications | - |
dc.title | Degree-based energies of graphs | - |
dc.type | article | - |
dc.identifier.doi | 10.1016/j.laa.2018.05.027 | - |
dc.identifier.scopus | 2-s2.0-85048493950 | - |
Налази се у колекцијама: | Faculty of Science, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | ![]() Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.