Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11431
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorZhang M.-
dc.contributor.authorLi A.-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T18:20:28Z-
dc.date.available2021-04-20T18:20:28Z-
dc.date.issued2017-
dc.identifier.issn0024-3795-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11431-
dc.description.abstract© 2017 Elsevier Inc. The distance spectral radius of a graph is the largest eigenvalue of its distance matrix. X.L. Zhang (2012) [31] determined the n-vertex graphs of given diameter with the minimum distance spectral radius. In this paper, we generalize this result by characterizing the graphs of order n with given connectivity and diameter having minimum distance spectral radius. In addition, we determine the minimum distance spectral radius of graphs among the n-vertex graphs with given connectivity and independence number, and characterize the corresponding extremal graph, thus determining the minimum distance spectral radius of graphs among n-vertex graphs with given connectivity (resp. independence) number.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceLinear Algebra and Its Applications-
dc.titleConnectivity, diameter, independence number and the distance spectral radius of graphs-
dc.typearticle-
dc.identifier.doi10.1016/j.laa.2017.04.014-
dc.identifier.scopus2-s2.0-85018568215-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

448

Downloads(s)

8

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.