Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLukovic D.-
dc.contributor.authorDiez-Lloret A.-
dc.contributor.authorStojkovic P.-
dc.contributor.authorRodriguez-Martinez, Daniel-
dc.contributor.authorPerez Arago M.-
dc.contributor.authorRodríguez-Jiménez F.-
dc.contributor.authorGonzáalez-Rodráiguez P.-
dc.contributor.authorLõpez-Barneo J.-
dc.contributor.authorSyková E.-
dc.contributor.authorJendelova P.-
dc.contributor.authorKostic J.-
dc.contributor.authormoreno, Victoria-
dc.contributor.authorStojkovic, Miodrag-
dc.contributor.authorBhattacharya S.-
dc.contributor.authorErceg, Slaven-
dc.description.abstract© AlphaMed Press and 2017 The Authors. Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic.-
dc.sourceStem Cells Translational Medicine-
dc.titleHighly efficient neural conversion of human pluripotent stem cells in adherent and animal-free conditions-
Appears in Collections:Faculty of Medical Sciences, Kragujevac

Page views(s)




Files in This Item:
File Description SizeFormat 
  Restricted Access
29.86 kBAdobe PDFThumbnail

Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.