Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11666
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorGutman, Ivan-
dc.contributor.authorMedina, Luis-
dc.contributor.authorPizarro P.-
dc.contributor.authorRobbiano M.-
dc.date.accessioned2021-04-20T18:56:00Z-
dc.date.available2021-04-20T18:56:00Z-
dc.date.issued2016-
dc.identifier.issn0012-365X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11666-
dc.description.abstract© 2016 Elsevier B.V. All rights reserved. The Laplacian Estrada index (LEE) and the signless Laplacian Estrada index (SLEE) of a graph G are, respectively, the sum of the exponentials of the eigenvalues of the Laplacian and signless Laplacian matrix of G. The vertex frustration index υb of a graph G is the minimum number of vertices whose deletion from G results in a bipartite graph. Graphs having maximum LEE and SLEE values are determined among graphs with n vertices and 1≤υb≤n-3.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceDiscrete Mathematics-
dc.titleGraphs with maximum Laplacian and signless Laplacian Estrada index-
dc.typearticle-
dc.identifier.doi10.1016/j.disc.2016.04.022-
dc.identifier.scopus2-s2.0-84973562887-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

463

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.