Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11862
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenserestrictedAccess-
dc.contributor.authorMilovanovic, Gradimir-
dc.contributor.authorStanić, Marija-
dc.date.accessioned2021-04-20T19:24:38Z-
dc.date.available2021-04-20T19:24:38Z-
dc.date.issued2016-
dc.identifier.issn1931-6828-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11862-
dc.description.abstract© Springer International Publishing Switzerland 2016. In this paper a brief historical survey of the development of quadrature rules with multiple nodes and the maximal algebraic degree of exactness is given. The natural generalization of such rules are quadrature rules with multiple nodes and the maximal degree of exactness in some functional spaces that are different from the space of algebraic polynomial. For that purpose we present a generalized quadrature rules considered by Ghizzeti and Ossicini (Quadrature Formulae, Academie, Berlin, 1970) and apply their ideas in order to obtain quadrature rules with multiple nodes and the maximal trigonometric degree of exactness. Such quadrature rules are characterized by the so-called s-and σ-orthogonal trigonometric polynomials. Numerical method for constructing such quadrature rules is given, as well as a numerical example to illustrate the obtained theoretical results.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceSpringer Optimization and Its Applications-
dc.titleQuadrature rules with multiple nodes-
dc.typebookPart-
dc.identifier.doi10.1007/978-3-319-31281-1_19-
dc.identifier.scopus2-s2.0-85007239406-
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

765

Број преузимања

11

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.