Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11952
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorĐurđević Nikolić, Jelena-
dc.contributor.authorWouters S.-
dc.contributor.authorRomanova, Julia-
dc.contributor.authorShimizu, Akihiro-
dc.contributor.authorCHAMPAGNE, Benoît-
dc.contributor.authorJunkers, Tanja-
dc.contributor.authorVanderzande, Dirk -
dc.contributor.authorVan Neck D.-
dc.contributor.authorWaroquier M.-
dc.contributor.authorVan Speybroeck, Veronique-
dc.contributor.authorCatak S.-
dc.date.accessioned2021-04-20T19:38:47Z-
dc.date.available2021-04-20T19:38:47Z-
dc.date.issued2015-
dc.identifier.issn0947-6539-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11952-
dc.description.abstract© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Despite various studies on the polymerization of poly(p-phenylene vinylene) (PPV) through different precursor routes, detailed mechanistic knowledge on the individual reaction steps and intermediates is still incomplete. The present study aims to gain more insight into the radical polymerization of PPV through the Gilch route. The initial steps of the polymerization involve the formation of a p-quinodimethane intermediate, which spontaneously self-initiates through a dimerization process leading to the formation of diradical species; chain propagation ensues on both sides of the diradical or chain termination occurs by the formation of side products, such as [2.2]paracyclophanes. Furthermore, different p-quinodimethane systems were assessed with respect to the size of their aromatic core as well as the presence of heteroatoms in/on the conjugated system. The nature of the aromatic core and the specific substituents alter the electronic structure of the p-quinodimethane monomers, affecting the mechanism of polymerization. The diradical character of the monomers has been investigated with several advanced methodologies, such as spin-projected UHF, CASSCF, CASPT2, and DMRG calculations. It was shown that larger aromatic cores led to a higher diradical character in the monomers, which in turn is proposed to cause rapid initiation.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceChemistry - A European Journal-
dc.titlePPV Polymerization through the Gilch Route: Diradical Character of Monomers-
dc.typearticle-
dc.identifier.doi10.1002/chem.201501900-
dc.identifier.scopus2-s2.0-84954456987-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

446

Downloads(s)

7

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.