Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12163
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorMagnant C.-
dc.contributor.authorSalehi Nowbandegani P.-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T20:09:54Z-
dc.date.available2021-04-20T20:09:54Z-
dc.date.issued2015-
dc.identifier.issn0166-218X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/12163-
dc.description.abstract© 2015 Elsevier B.V. Given a graph G, the atom-bond connectivity (ABC) index is defined to be ABC(G)=a<inf>u∼v</inf>d(u)+d(v)-2d(u)d(v) where u and v are vertices of G, d(u) denotes the degree of the vertex u, and u∼v indicates that u and v are adjacent. Although it is known that among trees of a given order n, the star has maximum ABC index, we show that if k 18, then the star of order k+1 has minimum ABC index among trees with k leaves. If k≥19, then the balanced double star of order k+2 has the smallest ABC index.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceDiscrete Applied Mathematics-
dc.titleWhich tree has the smallest ABC index among trees with k leaves?-
dc.typearticle-
dc.identifier.doi10.1016/j.dam.2015.05.008-
dc.identifier.scopus2-s2.0-84940721996-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

460

Downloads(s)

12

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.