Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12174
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorDu J.-
dc.contributor.authorSu G.-
dc.contributor.authorTu, Jianhua-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T20:11:29Z-
dc.date.available2021-04-20T20:11:29Z-
dc.date.issued2015-
dc.identifier.issn0166-218X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/12174-
dc.description.abstract© 2015 Elsevier B.V. All rights reserved. Graph invariants, based on the distances between the vertices of a graph, are widely used in theoretical chemistry. The degree resistance distance of a graph G is defined as DR(G) = Σ{u, v}⊆V(G)[d(u) + d(v)]R(u, v), where d(u) is the degree of the vertex u, and R(u, v) the resistance distance between the vertices u and v. Let Cact(n; t) be the set of all cacti possessing n vertices and t cycles. The elements of Cact(n; t) with minimum degree resistance distance are characterized.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceDiscrete Applied Mathematics-
dc.titleThe degree resistance distance of cacti-
dc.typearticle-
dc.identifier.doi10.1016/j.dam.2015.02.022-
dc.identifier.scopus2-s2.0-84933278252-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

441

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.