Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12278
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authordas, kinkar-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T20:26:49Z-
dc.date.available2021-04-20T20:26:49Z-
dc.date.issued2014-
dc.identifier.issn0024-3795-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/12278-
dc.description.abstractLet G=(V,E) be a simple graph with vertex set V={v1, v2,.,vn} and edge set E={e1, e2,.,em}. The incidence matrix I(G) of G is the n×m matrix whose (i,j)-entry is 1 if vi is incident to ej and 0 otherwise. The incidence energy IE of G is the sum of the singular values of I(G). In this paper we give lower and upper bounds for IE in terms of n, m, maximum degree, clique number, independence number, and the first Zagreb index. Moreover, we obtain Nordhaus-Gaddum-type results for IE. © 2013 Elsevier Inc.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceLinear Algebra and Its Applications-
dc.titleOn incidence energy of graphs-
dc.typearticle-
dc.identifier.doi10.1016/j.laa.2013.12.026-
dc.identifier.scopus2-s2.0-84894281046-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

441

Downloads(s)

9

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.