Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12279
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorCarmona J.-
dc.contributor.authorGutman, Ivan-
dc.contributor.authorTamblay N.-
dc.contributor.authorRobbiano M.-
dc.date.accessioned2021-04-20T20:26:57Z-
dc.date.available2021-04-20T20:26:57Z-
dc.date.issued2014-
dc.identifier.issn0024-3795-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/12279-
dc.description.abstractLet R be a nonnegative Hermitian matrix. The energy of R, denoted by E(R), is the sum of absolute values of its eigenvalues. We construct an increasing sequence that converges to the Perron root of R. This sequence yields a decreasing sequence of upper bounds for E(R). We then apply this result to the Laplacian energy of trees of order n, namely to the sum of the absolute values of the eigenvalues of the Laplacian matrix, shifted by -2(n-1)/n. © 2014 Elsevier Inc.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceLinear Algebra and Its Applications-
dc.titleA decreasing sequence of upper bounds for the Laplacian energy of a tree-
dc.typearticle-
dc.identifier.doi10.1016/j.laa.2014.01.013-
dc.identifier.scopus2-s2.0-84894234020-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

490

Downloads(s)

9

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.