Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/13901
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.contributor.authorAli, Akbar-
dc.contributor.authorGutman, Ivan-
dc.contributor.authorSaber H.-
dc.contributor.authorAlanazi A.-
dc.date.accessioned2022-02-02T17:30:57Z-
dc.date.available2022-02-02T17:30:57Z-
dc.date.issued2022-
dc.identifier.issn0340-6253-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/13901-
dc.description.abstractA bond incident degree (BID) index of a graph G is defined as ∑ f(dG(u), dG(v)), with summation ranging over all pairs of adjacent vertices u, v of G, where dG(w) denotes the degree of the vertex w of G, and f is a real-valued symmetric function. This paper reports extremal results for BID indices of the type Ifi(G) = ∑ [fi(dG(u))/dG(u) + fi(dG(v))/dG(v)], where i ∈ {1, 2}, f1 is strictly convex, and f2 is strictly concave. Graphs attaining minimum If1 and maximum If2 are characterized from the class of connected (n, m)-graphs and chemical (n, m)-graphs, where n and m satisfy the conditions 3n ≥ 2m, n ≥ 4, m ≥ n + 1. By this, we extend and complement the recent result by Tomescu [ MATCH Commun. Math. Comput. Chem. 85 (2021) 285-294], and cover several well-known indices, including general zeroth-order Randić index, multiplicative first and second Zagreb indices, variable sum exdeg index, and Lanzhou index.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceMatch-
dc.titleOn bond incident degree indices of (n, m)-graphs-
dc.typearticle-
dc.identifier.doi10.46793/match.87-1.089A-
dc.identifier.scopus2-s2.0-85116647895-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

477

Downloads(s)

78

Files in This Item:
File Description SizeFormat 
10.46793-match.87-1.089A.pdf357.07 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons