Please use this identifier to cite or link to this item:
https://scidar.kg.ac.rs/handle/123456789/15472
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.rights.license | Attribution 3.0 United States | * |
dc.contributor.author | Nikolić, Rale | - |
dc.contributor.author | Pant, Rajandra P. | - |
dc.contributor.author | Ristić, Vladimir | - |
dc.contributor.author | Šebekovic, Aleksandar | - |
dc.date.accessioned | 2023-02-01T09:02:17Z | - |
dc.date.available | 2023-02-01T09:02:17Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Nikolić RM, Pant RP, Ristić VT, Šebeković A. Common Fixed Points Theorems for Self-Mappings in Menger PM-Spaces. Mathematics. 2022; 10(14):2449. https://doi.org/10.3390/math10142449 | en_US |
dc.identifier.issn | 2227-7390 | en_US |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/15472 | - |
dc.description.abstract | The purpose of this paper is to prove that orbital continuity for a pair of self-mappings is a necessary and sufficient condition for the existence and uniqueness of a common fixed point for these mappings defined on Menger PM-spaces with a nonlinear contractive condition. The main results are obtained using the notion of R-weakly commutativity of type Af (or type Ag). These results generalize some known results. | en_US |
dc.language.iso | en | en_US |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.source | Mathematics | - |
dc.subject | probabilistic metric spaces | en_US |
dc.subject | common fixed point | en_US |
dc.subject | R-weakly commuting mappings | en_US |
dc.subject | nonlinear contractive condition | en_US |
dc.title | Common Fixed Points Theorems for Self-Mappings in Menger PM-Spaces | en_US |
dc.type | article | en_US |
dc.description.version | Published | en_US |
dc.identifier.doi | 10.3390/math10142449 | en_US |
dc.type.version | PublishedVersion | en_US |
Appears in Collections: | Faculty of Education, Jagodina |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mathematics-10-02449-v2.pdf | 290.7 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License