Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/15557
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.contributor.authorMao, Yaping-
dc.contributor.authorFurtula, Boris-
dc.date.accessioned2023-02-08T12:07:20Z-
dc.date.available2023-02-08T12:07:20Z-
dc.date.issued2021-
dc.identifier.issn0340-6253en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/15557-
dc.description.abstractSteiner distance dG(S) is a natural generalization of the concept of distance in a graph. For a connected graph G of order at least 2 and S ⊆ V (G), dG(S) is equal to the minimum size among all connected subgraphs whose vertex sets are equal to the set S. Here, the known results on the Steiner distance parameters used in chemical graph theory such as Steiner Wiener index, Steiner degree distance, Steiner Harary index, Steiner Gutman index, Steiner hyper–Wiener index, and Steiner Hosoya polynomial are surveyed. Additionally, some conjectures and open problems are listed.en_US
dc.description.sponsorshipSupported by the National Science Foundation of China (Nos. 11601254, 11551001, 11161037, 61763041, 11661068, and 11461054), the Science Fond of Qinghai Province (Nos. 2016-ZJ-948Q, and 2014-ZJ-907), the Qinghai Key Laboratory of Internet of Things Project (2017-ZJ-Y21) and the Serbian Ministry of Education, Science and Technological Development (Grant No. 451-03-9/2021-14/200122).en_US
dc.description.urihttps://match.pmf.kg.ac.rs/electronic_versions/Match86/n2/match86n2_211-287.pdfen_US
dc.language.isoen_USen_US
dc.publisherUniversity of Kragujevacen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceMATCH Communications in Mathematical and in Computer Chemistry-
dc.titleSteiner distance in chemical graph theoryen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

445

Downloads(s)

69

Files in This Item:
File Description SizeFormat 
paper0158.pdf1.17 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons