Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/15895
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCruz R.-
dc.contributor.authorGutman, Ivan-
dc.contributor.authorRada, Juan-
dc.date.accessioned2023-02-08T16:02:08Z-
dc.date.available2023-02-08T16:02:08Z-
dc.date.issued2022-
dc.identifier.issn0166-218X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/15895-
dc.description.abstractGiven a graph G=(V,E) with vertex set V and edge set E, we extend the concept of k-matching number and Hosoya index to a weighted graph (G;ω), where ω is a weight function defined over E. In particular, if φ is a vertex-degree-based (VDB) topological index defined via φ=φ(G)=∑uv∈EφdG(u),dG(v),where dG(u) is the degree of the vertex u and φi,j is an appropriate function with the property φi,j=φj,i, then we consider the weighted graph (G;φ) with weight function φ:E→R defined as φ(uv)=φdG(u),dG(v),for all uv∈E. It turns out that m((G;φ),1), the number of weighted 1-matchings in (G;φ), is precisely φ(G), and for k≥2, the k-matching numbers m((G;φ),k) can be viewed as new kth order VDB-Hosoya indices. Later, we consider the extremal value problem of the Hosoya index over the set Tn;φ=(T;φ):T∈Tn,where Tn is the set of trees with n vertices.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceDiscrete Applied Mathematics-
dc.titleHosoya index of VDB-weighted graphs-
dc.typearticle-
dc.identifier.doi10.1016/j.dam.2022.03.031-
dc.identifier.scopus2-s2.0-85129510605-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

373

Downloads(s)

4

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.