Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/17346
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArsenijević, Momir-
dc.contributor.authorJeknić-Dugić, J.-
dc.contributor.authorDugic, Miroljub-
dc.date.accessioned2023-03-17T10:21:29Z-
dc.date.available2023-03-17T10:21:29Z-
dc.date.issued2013-
dc.identifier.citationArsenijević M. et al 2013 Chinese Phys. B 22 020302en_US
dc.identifier.issn1674-1056en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/17346-
dc.description.abstractThe composite systems can be non-uniquely decomposed into parts (subsystems). Not all decompositions (structures) of a composite system are equally physically relevant. In this paper we answer on theoretical ground why it may be so. We consider a pair of mutually un-coupled modes in the phase space representation that are subjected to the independent quantum amplitude damping channels. By investigating asymptotic dynamics of the degrees of freedom, we find that the environment is responsible for the structures non-equivalence. Only one structure is distinguished by both locality of the environmental influence on its subsystems and a classical-like description.en_US
dc.description.sponsorshipWork financially supported by the Ministry of Science Serbia (Grant No. 171028)en_US
dc.language.isoenen_US
dc.publisherIOP Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceChinese Physics B-
dc.subjectamplitude dissipative channelen_US
dc.subjecttwo-mode stateen_US
dc.subjectKraus representationen_US
dc.subjectalternate degrees of freedomen_US
dc.titleAsymptotic dynamics of the alternate degrees of freedom for a two-mode system: An analytically solvable modelen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1088/1674-1056/22/2/020302en_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

342

Downloads(s)

3

Files in This Item:
File Description SizeFormat 
1207.5260.pdf112.06 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.