Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/17348
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGutman, Ivan-
dc.contributor.authorFurtula, Boris-
dc.date.accessioned2023-03-17T10:24:43Z-
dc.date.available2023-03-17T10:24:43Z-
dc.date.issued2011-
dc.identifier.issn2651-477Xen_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/17348-
dc.description.abstractArithmetic-geometric indices are graph invariants defined as the sum of terms \(\sqrt{Q_u\,Q_v} / [(Q_u + Q_v)/2]\) over all edges uv of the graph, where Qu is some quantity associated with the vertex u. If Qu is the number of vertices (resp. edges) lying closer to u than to v, then one speaks of the second (resp. third) geometric-arithmetic index, GA2 and GA3 . We obtain inequalities between GA2 and GA3 for trees, revealing that the main parameters determining their relation are the number of vertices and the number of pendent vertices.en_US
dc.language.isoen_USen_US
dc.publisherHacettepe University Faculty of scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceHacettepe Journal of Mathematics and Statistics-
dc.subjectDistance (in graph)en_US
dc.subjectDistance between vertex and edgeen_US
dc.subjectGeometric-arithmetic indexen_US
dc.subjectTreesen_US
dc.titleEstimating the second and third geometric-arithmetic indicesen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

349

Downloads(s)

19

Files in This Item:
File Description SizeFormat 
paper0074.pdf145.03 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.