Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/17392
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGutman, Ivan-
dc.contributor.authorFurtula, Boris-
dc.contributor.authorChen, Xiaodan-
dc.contributor.authorQian, Jianguo-
dc.date.accessioned2023-03-20T14:08:14Z-
dc.date.available2023-03-20T14:08:14Z-
dc.date.issued2015-
dc.identifier.issn0340-6253en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/17392-
dc.description.abstractThe resolvent Estrada index of a (non-complete) graph \(G\) of order \(n\) is defined as \(EE_r =\sum_{i=1}^n(1-\lambda_i/(n-1))^{-1}\), where \(\lambda_1, \lambda_2, \lambda_n\) are the eigenvalues of \(G\). Combining computational and mathematical approaches, we establish a number of properties of \(EE_r\). In particular, any tree has smaller \(EE_r\)-value than any unicyclic graph of the same order, and any unicyclic graph has smaller \(EE_r\)-value than any tricyclic graph of the same order. The trees, unicyclic, bicyclic, and tricyclic graphs with smallest and greatest \(EE_r\) are determined.en_US
dc.language.isoen_USen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceMATCH Communications in Mathematical and in Computer Chemistry-
dc.subjecteigenvalues of a graphen_US
dc.subjectGraph spectraen_US
dc.subjectresolvent matrixen_US
dc.subjectEstrada indexen_US
dc.subjectresolvent Estrada indexen_US
dc.titleResolvent Estrada index - computational and mathematical studiesen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

364

Downloads(s)

26

Files in This Item:
File Description SizeFormat 
paper0109.pdf271.6 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.