Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19271
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenseCC0 1.0 Universal*
dc.contributor.authorAvdić, Aldina R.-
dc.contributor.authorDjordjević, Natasa Z.-
dc.contributor.authorMarovac, Ulfeta A.-
dc.contributor.authorMemić, Lejlija M.-
dc.contributor.authorDolićanin, Zana Ć.-
dc.contributor.authorBabic, Goran-
dc.date.accessioned2023-11-03T09:48:40Z-
dc.date.available2023-11-03T09:48:40Z-
dc.date.issued2023-
dc.identifier.isbn9788682172024en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19271-
dc.description.abstractThrombophilia in pregnancy is the result of a complex interaction of inherited and acquired factors, which increase blood coagulation and consequently placental ischemic conditions. Early identification of risk of developing thrombophilia in pregnancy is crucial for implementing preventive measures and personalized therapy. In this study, we propose a novel approach for prediction of thrombophilia in pregnancy utilizing machine learning (ML) algorithms with a particular focus on neural networks. The research is done using a dataset consisting of demographic, lifestyle, and clinical information from a 35 pregnant woman (22 healthy and 13 with thrombophilia). These features are used to train and evaluate different ML models with neural networks and decision trees. The evaluation of the proposed approach involves cross-validation and performance metrics assessment. The results highlight the effectiveness of decision trees and neural networks in accurately predicting thrombophilia in pregnancy risk.en_US
dc.language.isoenen_US
dc.publisherUniversity of Kragujevac, Institute for Information Technologiesen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.source2nd International Conference on Chemo and BioInformatics-
dc.subjectneural networksen_US
dc.subjectdecision treesen_US
dc.subjectmachine learningen_US
dc.subjectthrombophilia in pregnancyen_US
dc.subjectpredictionen_US
dc.titleThrombophilia Prediction Using Machine Learning Algorithmsen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/ICCBI23.140Aen_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

865

Број преузимања

59

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
2nd-ICCBIKG- str 140-143.pdf339.84 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons