Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/21170
Full metadata record
DC FieldValueLanguage
dc.contributor.authorЖивановић, Марко-
dc.contributor.authorRistic, Olga-
dc.contributor.authorMilunović Koprivica, Sandra-
dc.date.accessioned2024-10-08T10:01:30Z-
dc.date.available2024-10-08T10:01:30Z-
dc.date.issued2024-
dc.identifier.isbn9788677762766en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/21170-
dc.description.abstractThis paper explores machine learning algorithms that contribute to meaning representation and context modeling in sentiment analysis. Language preprocessing techniques are described in detail. The study also discusses string distance calculations and the application of Naive Bayes for classification, emphasizing important model metrics such as accuracy. The final section of the paper presents a practical example encompassing the process of data collection, analysis, preprocessing, classification using machine learning algorithms, and model evaluation. Testing demonstrated the system's ability to classify sentiments in Serbian Language.en_US
dc.language.isoenen_US
dc.publisherFaculty of Technical Sciences Čačak, University of Kragujevacen_US
dc.relationMSTDI - 451-03-66/2024-03/200132en_US
dc.relation.ispartof10th International Scientific Conference Technics, Informatics and Education - TIE 2024en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectNaive Bayesen_US
dc.subjectModel Metricsen_US
dc.subjectMeaningen_US
dc.subjectContexten_US
dc.subjectSentimentsen_US
dc.titleNatural Language Processing in Meaning Representation for Sentiment Analysis in Serbian Languageen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/TIE24.108Zen_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Technical Sciences, Čačak

Page views(s)

125

Downloads(s)

8

Files in This Item:
File Description SizeFormat 
17 - I.15..pdf671.21 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons