Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/22749
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndrić, Filip-
dc.contributor.authorZivkovic, Milena-
dc.contributor.authorMiladinović, Tatjana-
dc.contributor.authorMiladinović, Aleksandar-
dc.contributor.authorKrstic, Dragana-
dc.contributor.authorKrstić, Ana-
dc.contributor.authorJanković, Katarina-
dc.contributor.authorKrasić, Katarina-
dc.contributor.authorZivkovic Radojevic, Marija-
dc.contributor.authorMilosavljević, Neda-
dc.contributor.authorMiloš, Grujić-
dc.date.accessioned2025-12-04T13:33:36Z-
dc.date.available2025-12-04T13:33:36Z-
dc.date.issued2025-
dc.identifier.isbn9788682172055en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/22749-
dc.description.abstractAchieving optimal dose distribution is essential in prostate radiotherapy, particularly with hypofractionated regimens. In this study, we present an AI-assisted dose optimisation framework, FOTELP-VOX-GA, integrating Monte Carlo simulation with a Genetic Algorithm. Comparing to a patient-specific VMAT (Volumetric Modulated Arc Therapy) plan, the method yielded dose estimates for the iliac bones, showing lower mean doses (1977.51 cGy) than those calculated by the Eclipse TPS (2092.1 cGy and 2085.3 cGy). The genetic optimization process achieved clinically acceptable deviations (2–10%) from prescribed doses to the tumor and surrounding tissues. These findings highlight the value of FOTELP-VOX-GA in supporting safe and personalized radiotherapy planning.en_US
dc.language.isoenen_US
dc.publisherInstitute for Information Technologies, University of Kragujevacen_US
dc.relation.ispartofBook of Proceedings International Conference on Chemo and BioInformatics (3 ; 2025 ; Kragujevac)en_US
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectRadiotherapy optimizationen_US
dc.subjectrostate canceren_US
dc.subjectFOTELP-VOX-GAen_US
dc.titleFOTELP-VOX-GA: Integrating Genetic Algorithms into Monte Carlo Dose Calculation for Prostate Canceren_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/ICCBIKG25.412Aen_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

5

Downloads(s)

2

Files in This Item:
File Description SizeFormat 
414-417-Andric.pdf721.35 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons