Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/8853
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.contributor.authorMilivojević M.-
dc.contributor.authorPavlović, Ljiljana-
dc.date.accessioned2020-09-19T16:51:04Z-
dc.date.available2020-09-19T16:51:04Z-
dc.date.issued2017-
dc.identifier.issn0166-218X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/8853-
dc.description.abstract© 2016 Elsevier B.V. The variation of the Randić index R′(G) of a graph G is defined by  R′(G)=∑uv∈E(G)[formula presented], where d(u) is the degree of vertex u and the summation extends over all edges uv of G. Let G(k,n) be the set of connected simple n-vertex graphs with minimum vertex degree k. In this paper we found in G(k,n) graphs for which the variation of the Randić index attains its minimum value. When k≤[formula presented] the extremal graphs are complete split graphs Kk,n−k∗, which have only vertices of two degrees, i.e. degree k and degree n−1, and the number of vertices of degree k is n−k, while the number of vertices of degree n−1 is k. For k≥[formula presented] the extremal graphs have also vertices of two degrees k and n−1, and the number of vertices of degree k is [formula presented]. Further, we generalized results for graphs with given maximum degree.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceDiscrete Applied Mathematics-
dc.titleThe variation of the Randić index with regard to minimum and maximum degree-
dc.typearticle-
dc.identifier.doi10.1016/j.dam.2016.09.010-
dc.identifier.scopus2-s2.0-84996521019-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

504

Downloads(s)

18

Files in This Item:
File Description SizeFormat 
10.1016-j.dam.2016.09.010.pdf130.83 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons