Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/8922
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.contributor.authordas, kinkar-
dc.contributor.authorBalachandran S.-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2020-09-19T17:01:23Z-
dc.date.available2020-09-19T17:01:23Z-
dc.date.issued2017-
dc.identifier.issn1452-8630-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/8922-
dc.description.abstractLet G be a graph with vertex set V and edge set E. Let di be the degree of the vertex vi of G. The inverse degree, Randić index, and harmonic index of G are defined as ID =Σvi∈V 1/di, R =Σvivj∈E 1/√di dj, and H = Σvivj∈E 2/(di + dj ), respectively. We obtain relations between ID and R as well as between ID and H. Moreover, we prove that in the case of trees, ID > R and ID > H.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceApplicable Analysis and Discrete Mathematics-
dc.titleInverse degree, randić index and harmonic index of graphs-
dc.typearticle-
dc.identifier.doi10.2298/AADM1702304D-
dc.identifier.scopus2-s2.0-85031934645-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

574

Downloads(s)

32

Files in This Item:
File Description SizeFormat 
10.2298-AADM1702304D.pdf322.29 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons