Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/9133
Full metadata record
DC FieldValueLanguage
dc.rights.licenseopenAccess-
dc.contributor.authordas, kinkar-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2020-09-19T17:32:43Z-
dc.date.available2020-09-19T17:32:43Z-
dc.date.issued2016-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/9133-
dc.description.abstract© 2016, Hacettepe University. All rights reserved. The energy of a graph G, denoted by E(G), is the sum of the absolute values of all eigenvalues of G. In this paper we present some lower and upper bounds for E(G) in terms of number of vertices, number of edges, and determinant of the adjacency matrix. Our lower bound is better than the classical McClelland’s lower bound. In addition, Nordhaus–Gaddum type results for E(G) are established.-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceHacettepe Journal of Mathematics and Statistics-
dc.titleBounds for the energy of graphs-
dc.typearticle-
dc.identifier.doi10.15672/HJMS.20164513097-
dc.identifier.scopus2-s2.0-84978766830-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

527

Downloads(s)

21

Files in This Item:
File Description SizeFormat 
10.15672-HJMS.20164513097.pdf73.87 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons