Please use this identifier to cite or link to this item:
https://scidar.kg.ac.rs/handle/123456789/9153
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.rights.license | openAccess | - |
dc.contributor.author | Su G. | - |
dc.contributor.author | Xiong L. | - |
dc.contributor.author | Gutman, Ivan | - |
dc.contributor.author | Xu L. | - |
dc.date.accessioned | 2020-09-19T17:35:50Z | - |
dc.date.available | 2020-09-19T17:35:50Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0354-5180 | - |
dc.identifier.uri | https://scidar.kg.ac.rs/handle/123456789/9153 | - |
dc.description.abstract | © 2016, University of Nis. All rights reserved. We investigate a new graph invariant named reciprocal product–degree distance, defined as: (Formula Presented) where deg(v) is the degree of the vertex v, and dist(u; v) is the distance between the vertices u and v in the underlying graph. RDD* is a product–degree modification of the Harary index. We determine the connected graph of given order with maximum RDD*-value, and establish lower and upper bounds for RDD*. Also a Nordhaus–Gaddum–type relation for RDD* is obtained. | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.source | Filomat | - |
dc.title | Reciprocal product–degree distance of graphs | - |
dc.type | article | - |
dc.identifier.doi | 10.2298/FIL1608217S | - |
dc.identifier.scopus | 2-s2.0-85006058457 | - |
Appears in Collections: | Faculty of Science, Kragujevac |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.2298-FIL1608217S.pdf | 282.25 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License