Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/9866
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenserestrictedAccess-
dc.contributor.authorAbdo H.-
dc.contributor.authorDimitrov D.-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T14:16:06Z-
dc.date.available2021-04-20T14:16:06Z-
dc.date.issued2012-
dc.identifier.issn0166-218X-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/9866-
dc.description.abstractFor a simple graph G=(V,E) with n vertices and m edges, the first Zagreb index and the second Zagreb index are defined as M1(G)= ∑v∈Vd(v)2 and M2(G)= ∑uv∈Ed(u)d(v), where d(u) is the degree of a vertex u of G. In [28], it was shown that if a connected graph G has maximal degree 4, then G satisfies M1(G)n=M2(G)m (also known as the Zagreb indices equality) if and only if G is regular or biregular of class 1 (a biregular graph whose no two vertices of same degree are adjacent). There, it was also shown that there exist infinitely many connected graphs of maximal degree Δ=5 that are neither regular nor biregular of class 1 which satisfy the Zagreb indices equality. Here, we generalize that result by showing that there exist infinitely many connected graphs of maximal degree Δ<5 that are neither regular nor biregular graphs of class 1 which satisfy the Zagreb indices equality. We also consider when the above equality holds when the degrees of vertices of a given graph are in a prescribed interval of integers. © 2011 Elsevier B.V. All rights reserved.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceDiscrete Applied Mathematics-
dc.titleOn the Zagreb indices equality-
dc.typearticle-
dc.identifier.doi10.1016/j.dam.2011.10.003-
dc.identifier.scopus2-s2.0-82755184117-
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

838

Број преузимања

20

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.