Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/10105
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorBamdad H.-
dc.contributor.authorAshraf F.-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T14:52:49Z-
dc.date.available2021-04-20T14:52:49Z-
dc.date.issued2010-
dc.identifier.issn0893-9659-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/10105-
dc.description.abstractLet G be an n-vertex graph. If λ1, λ 2,⋯, λn and μ1, μ 2,⋯, μ n are the ordinary (adjacency) eigenvalues and the Laplacian eigenvalues of G, respectively, then the Estrada index and the Laplacian Estrada index of G are defined as EE (G) = Σni=1 eλi and LEE (G) = Σni=1 eλi, respectively. Some new lower bounds for EE and LEE are obtained and shown to be the best possible. © 2010 Elsevier Ltd. All rights reserved.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceApplied Mathematics Letters-
dc.titleLower bounds for Estrada index and Laplacian Estrada index-
dc.typearticle-
dc.identifier.doi10.1016/j.aml.2010.01.025-
dc.identifier.scopus2-s2.0-79958848614-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

543

Downloads(s)

7

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.