Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/10160
Назив: A fully benzenoid system has a unique maximum cardinality resonant set
Аутори: Gutman, Ivan
salem, khaled
Датум издавања: 2010
Сажетак: A benzenoid system is a 2-connected plane graph such that its each inner face is a regular hexagon of side length 1. A benzenoid system is Kekuléan if it has a perfect matching. Let P be a set of hexagons of a Kekuléan benzenoid system B. The set P is called a resonant set of B if the hexagons in P are pair-wise disjoint and the subgraph B-P (obtained by deleting from B the vertices of the hexagons in P) is either empty or has a perfect matching. It was shown (Gutman in Wiss. Z. Thechn. Hochsch. Ilmenau 29:57-65, 1983; Zheng and Chen in Graphs Comb. 1:295-298, 1985) that for every maximum cardinality resonant set P of a Kekuléan benzenoid system B, the subgraph B-P is either empty or has a unique perfect matching. A Kekuléan benzenoid system B is said to be fully benzenoid if there exists a maximum cardinality resonant set P of B, such that the subgraph B-P is empty. It is shown that a fully benzenoid system has a unique maximum cardinality resonant set, a well-known statement that, so far, has remained without a rigorous proof. © 2009 Springer Science+Business Media B.V.
URI: https://scidar.kg.ac.rs/handle/123456789/10160
Тип: article
DOI: 10.1007/s10440-009-9550-1
ISSN: 0167-8019
SCOPUS: 2-s2.0-77956759153
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

472

Број преузимања

8

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.