Please use this identifier to cite or link to this item:
Title: The inverted hysteresis loops and exchange bias effects in amorphous/nanocrystalline fe<inf>72</inf>cu<inf>1</inf>v<inf>4</inf>si<inf>15</inf>b<inf>8</inf> ribbons at room temperature
Authors: Surla R.
Mitrovic, Nebojsa
Vasic M.
Minic D.
Journal: Science of Sintering
Issue Date: 1-Jan-2020
Abstract: © 2020 Authors. Published by association for ETRAN Society. Тhe influence of thermally induced microstructural transformations on magnetic properties of Fe72Cu1V4Si15B8 ribbon with combined amorphous/nanocrystalline structure is presented. The experiments showed that thermally induced structural changes are in correlation with the appearance of magnetic hysteresis, i.e. with inverted hysteresis loops (IHL) and exchange bias (EB) effects. It was found that the ratio of surface to volume of a ribbon sample have an influence on hysteresis loop appearance. The inverted hysteresis loops were observed for the 1.5 mm wide and 55 μm thick alloy samples shorter than 10 mm, but for the samples longer than 10 mm hysteresis loops were normal. With an increase of annealing temperature, a shift of the hysteresis loops measured at room temperature was noticed. The highest positive exchange bias field Heb was observed for the sample annealed at 723 K, together with the lowest magnetic field at which the changes from inverted to normal hysteresis loop occurred. Annealing at the temperature of 823 K resulted in negative Heb.
Type: Article
DOI: 10.2298/SOS2003283S
ISSN: 0350820X
SCOPUS: 85097595770
Appears in Collections:Faculty of Technical Sciences, Čačak
[ Google Scholar ]

Page views(s)




Files in This Item:
File Description SizeFormat 
10.2298-SOS2003283S.pdf1.58 MBAdobe PDFThumbnail

Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.