Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11530
Назив: Determination of the important machining parameters on the chip shape classification by adaptive neuro-fuzzy technique
Аутори: Jovic Z.
Arsic N.
Vukojević V.
Anicic O.
Vujicic, Sladjana
Датум издавања: 2017
Сажетак: © 2016 Elsevier Inc. The main goal of the study was to analyze the influence of machining parameters on the chip shape classification. Straight turning of mild steel (A500/A500M-13) and AISI 304 stainless steel were performed to monitor the chip shapes. Cutting speed, feed rate, depth of cur and surface roughness of the material were used as inputs. Adaptive neuro-fuzzy inference system (ANFIS) was used in to determine the inputs influence on the chip shape classification. The selection process was performed to estimate the most dominant factors which affect the chip shape classification. According to the results surface roughness has the highest influence on the chip shape classification. The obtained model could be used as optimal parameter settings for the best chip shape classification.
URI: https://scidar.kg.ac.rs/handle/123456789/11530
Тип: article
DOI: 10.1016/j.precisioneng.2016.11.001
ISSN: 0141-6359
SCOPUS: 2-s2.0-85006414911
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

477

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.