Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/11530
Назив: | Determination of the important machining parameters on the chip shape classification by adaptive neuro-fuzzy technique |
Аутори: | Jovic Z. Arsic N. Vukojević V. Anicic O. Vujicic, Sladjana |
Датум издавања: | 2017 |
Сажетак: | © 2016 Elsevier Inc. The main goal of the study was to analyze the influence of machining parameters on the chip shape classification. Straight turning of mild steel (A500/A500M-13) and AISI 304 stainless steel were performed to monitor the chip shapes. Cutting speed, feed rate, depth of cur and surface roughness of the material were used as inputs. Adaptive neuro-fuzzy inference system (ANFIS) was used in to determine the inputs influence on the chip shape classification. The selection process was performed to estimate the most dominant factors which affect the chip shape classification. According to the results surface roughness has the highest influence on the chip shape classification. The obtained model could be used as optimal parameter settings for the best chip shape classification. |
URI: | https://scidar.kg.ac.rs/handle/123456789/11530 |
Тип: | article |
DOI: | 10.1016/j.precisioneng.2016.11.001 |
ISSN: | 0141-6359 |
SCOPUS: | 2-s2.0-85006414911 |
Налази се у колекцијама: | Faculty of Engineering, Kragujevac |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
PaperMissing.pdf Ограничен приступ | 29.86 kB | Adobe PDF | Погледајте |
Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.