Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11556
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authordas, kinkar-
dc.contributor.authorMojallal, S. Ahmad-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T18:38:58Z-
dc.date.available2021-04-20T18:38:58Z-
dc.date.issued2017-
dc.identifier.issn0024-3795-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11556-
dc.description.abstract© 2016 Elsevier Inc. Let G be a simple graph of order n with maximum degree Δ and minimum degree δ. Let (d)=(d1,d2,…,dn) and (d⁎)=(d1⁎,d2⁎,…,dn⁎) be the sequences of degrees and conjugate degrees of G. We define π=∑i=1ndi and π⁎=∑i=1ndi⁎, and prove that π⁎≤LEL≤IE≤π where LEL and IE are, respectively, the Laplacian-energy-like invariant and the incidence energy of G. Moreover, we prove that π−π⁎>(δ/2)(n−Δ) for a certain class of graphs. Finally, we compare the energy of G and π, and present an upper bound for the Laplacian energy in terms of degree sequence.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceLinear Algebra and Its Applications-
dc.titleRelations between degrees, conjugate degrees and graph energies-
dc.typearticle-
dc.identifier.doi10.1016/j.laa.2016.11.009-
dc.identifier.scopus2-s2.0-84999018388-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

441

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.