Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11603
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenserestrictedAccess-
dc.contributor.authorYu L.-
dc.contributor.authorZhang, Yusen-
dc.contributor.authorJian G.-
dc.contributor.authorGutman, Ivan-
dc.date.accessioned2021-04-20T18:45:51Z-
dc.date.available2021-04-20T18:45:51Z-
dc.date.issued2017-
dc.identifier.issn1546-1955-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11603-
dc.description.abstract© 2017 American Scientific Publishers. This paper proposes a new classification for microarray data which utilizes K-means clustering combined with modified single-to-noise-ratio based on graph energy (SNRGE) method. This method is employed to select a small subset of characteristic features from DNA microarray data. Comparing with the single-to-noise-ratio (SNR) method proposed by Golub, it demonstrates that the SNRGES outperforms SNR method. SNRGE obtains significant improvement on the classification result via SNRGES in contrast with other SNR formulas, and the result shows that the use of SNRGE formula is critical in eliminating irrelevant features. As compared to other feature selection methods via five classifiers, the SNRGES yields better classification performance. On available training examples from four microarray databases, we indicate that SNRGES is capable of achieving better accuracies than previous studies, and is able to effectively remove redundant features and obtain efficient sets for sample classification purposes.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceJournal of Computational and Theoretical Nanoscience-
dc.titleClassification for microarray data based on K-means clustering combined with modified single-to-noise-ratio based on graph energy-
dc.typearticle-
dc.identifier.doi10.1166/jctn.2017.6248-
dc.identifier.scopus2-s2.0-85014892412-
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

721

Број преузимања

16

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.