Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/11606
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenserestrictedAccess-
dc.contributor.authorAnicic O.-
dc.contributor.authorJović M.-
dc.contributor.authorSkrijelj H.-
dc.contributor.authorNedic, Bogdan-
dc.date.accessioned2021-04-20T18:46:15Z-
dc.date.available2021-04-20T18:46:15Z-
dc.date.issued2017-
dc.identifier.issn0143-8166-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11606-
dc.description.abstract© 2016 Elsevier Ltd Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceOptics and Lasers in Engineering-
dc.titlePrediction of laser cutting heat affected zone by extreme learning machine-
dc.typearticle-
dc.identifier.doi10.1016/j.optlaseng.2016.07.005-
dc.identifier.scopus2-s2.0-84990948120-
Налази се у колекцијама:Faculty of Engineering, Kragujevac

Број прегледа

749

Број преузимања

10

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
PaperMissing.pdf
  Ограничен приступ
29.86 kBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.