Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11666
Title: Graphs with maximum Laplacian and signless Laplacian Estrada index
Authors: Gutman, Ivan
Medina, Luis
Pizarro P.
Robbiano M.
Issue Date: 2016
Abstract: © 2016 Elsevier B.V. All rights reserved. The Laplacian Estrada index (LEE) and the signless Laplacian Estrada index (SLEE) of a graph G are, respectively, the sum of the exponentials of the eigenvalues of the Laplacian and signless Laplacian matrix of G. The vertex frustration index υb of a graph G is the minimum number of vertices whose deletion from G results in a bipartite graph. Graphs having maximum LEE and SLEE values are determined among graphs with n vertices and 1≤υb≤n-3.
URI: https://scidar.kg.ac.rs/handle/123456789/11666
Type: article
DOI: 10.1016/j.disc.2016.04.022
ISSN: 0012-365X
SCOPUS: 2-s2.0-84973562887
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

461

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.