Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11680
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authorGutman I.-
dc.contributor.authorFurtula, Boris-
dc.contributor.authordas, kinkar-
dc.date.accessioned2021-04-20T18:57:56Z-
dc.date.available2021-04-20T18:57:56Z-
dc.date.issued2016-
dc.identifier.issn0096-3003-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/11680-
dc.description.abstract© 2016 Elsevier Inc. Let G be a connected graph with vertex set V(G). For u, v ∈ V(G), d(v) and d(u, v) denote the degree of the vertex v and the distance between the vertices u and v. A much studied degree-and-distance-based graph invariant is the degree distance, defined as DD=∑{u,v}⊆V(G)[d(u)+d(v)]d(u,v). A related such invariant (usually called Gutman index) is ZZ=∑{u,v}⊆V(G)[d(u)·d(v)]d(u,v). If G is a tree, then both DD and ZZ are linearly related with the Wiener index W=∑{u,v}⊆V(G)d(u,v). We examine the difference DD-ZZ for trees and establish a number of regularities.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceApplied Mathematics and Computation-
dc.titleOn some degree-and-distance-based graph invariants of trees-
dc.typearticle-
dc.identifier.doi10.1016/j.amc.2016.04.040-
dc.identifier.scopus2-s2.0-84969130561-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

466

Downloads(s)

8

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.