Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11892
Title: Low-dimensional compounds containing bioactive ligands. Part VI: Synthesis, structures, in vitro DNA binding, antimicrobial and anticancer properties of first row transition metal complexes with 5-chloro-quinolin-8-ol
Authors: Potočňák I.
Vranec P.
Kuchárová, Veronika
Sabolova D.
Vataščinová M.
Kudláčová J.
Radojevic, Ivana
Čomić, Ljiljana
Simovic Markovic, Bojana
Volarevic, Vladislav
Arsenijevic, Nebojsa
Trifunović, Srećko
Journal: Journal of Inorganic Biochemistry
Issue Date: 1-Jan-2016
Abstract: © 2015 Elsevier Inc. All rights reserved. A series of new 3d metal complexes with 5-chloro-quinolin-8-ol (ClQ), [Mn(ClQ)2] (1), [Fe(ClQ)3] (2), [Co(ClQ)2(H2O)2] (3), [Ni(ClQ)2(H2O)2] (4), [Cu(ClQ)2] (5), [Zn(ClQ)2(H2O)2] (6), [Mn(ClQ)3]·DMF (7) and [Co(ClQ)3]·DMF·(EtOH)0.35 (8) (DMF = N,N-dimethylformamide), has been synthesized and characterized by elemental analysis, IR spectroscopy and TG-DTA thermal analysis. X-ray structure analysis of 7 and 8 revealed that these molecular complexes contain three chelate ClQ molecules coordinated to the central atoms in a deformed octahedral geometry and free space between the complex units is filled by solvated DMF and ethanol molecules. Antimicrobial activity of 1-6 was tested by determining the minimum inhibitory concentration and minimum microbicidal concentration against 12 strains of bacteria and 5 strains of fungi. The intensity of antimicrobial action varies depending on the group of microorganism and can be sorted: 1 > ClQ > 6 > 3/4 > 2 > 5. Complexes 1-6 exhibit high cytotoxic activity against MDA-MB, HCT-116 and A549 cancer cell lines. Among them, complex 2 is significantly more cytotoxic against MDA-MB cells than cisplatin at all tested concentrations and is not cytotoxic against control mesenchymal stem cells indicating that this complex seems to be a good candidate for future pharmacological evaluation. Interaction of 1-6 with DNA was investigated using UV-VIS spectroscopy, fluorescence spectroscopy and agarose gel electrophoresis. The binding studies indicate that 1-6 can interact with CT-DNA through intercalation; complex 2 has the highest binding affinity. Moreover, complexes 1-6 inhibit the catalytic activity of topoisomerase I.
URI: https://scidar.kg.ac.rs/handle/123456789/11892
Type: journal article
DOI: 10.1016/j.jinorgbio.2015.10.015
ISSN: 01620134
SCOPUS: 84947215567
Appears in Collections:Faculty of Medical Sciences, Kragujevac
Faculty of Science, Kragujevac

Page views(s)

100

Downloads(s)

2

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.