Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/11924
Title: Employing phenomenological model in load-balancing optimization of parallel multi-scale muscle simulations
Authors: Kaplarević-Mališić, Ana
Ivanović, Miloš
Stojanović, Boban
Svičević, Marina
Antonijević Đ.
Journal: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering, BIBE 2015
Issue Date: 28-Dec-2015
Abstract: © 2015 IEEE. Since multi-scale models of muscles rely on the integration of physical and biochemical properties across multiple length and time scales, these models are highly CPU consuming and memory intensive. Therefore, their practical implementation and usage in real-world applications is limited by their high requirements for computational power. There are various reported solutions to the problems of the distributed computation of the complex systems that could also be applied to the multi-scale muscle simulations. In this paper, we present a novel load balancing method for parallel multi-scale muscle simulations on distributed computing resources. The method uses data obtained from simple Hill phenomenological model in order to predict computational weights of the integration points within the multi-scale model. Using obtained weights it is possible to improve domain decomposition prior to multi-scale simulation run and consequently significantly reduce computational time. The method is applied to two-scale muscle model where a finite element (FE) macro model is coupled with Huxley's model of cross-bridge kinetics on the microscopic level. The massive parallel solution is based on decomposition of micro model domain and static scheduling policy. It was verified on real-world example, showing high utilization of all involved CPUs and ensuring high scalability, thanks to the novel scheduling approach. Performance analysis clearly shown that inclusion of complexities prediction in reducing the execution time of parallel run by about 40% compared to the same model with scheduler that assumes equal complexities of all micro models.
URI: https://scidar.kg.ac.rs/handle/123456789/11924
Type: conference paper
DOI: 10.1109/BIBE.2015.7367673
SCOPUS: 84962828487
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

69

Downloads(s)

1

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.