Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12300
Full metadata record
DC FieldValueLanguage
dc.rights.licenserestrictedAccess-
dc.contributor.authordas, kinkar-
dc.contributor.authorGutman, Ivan-
dc.contributor.authorCevik A.-
dc.date.accessioned2021-04-20T20:30:11Z-
dc.date.available2021-04-20T20:30:11Z-
dc.date.issued2014-
dc.identifier.issn0024-3795-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/12300-
dc.description.abstractLet G be a connected graph of order n with Laplacian eigenvalues μ1≥μ2≥⋯≥μn-1> μn=0. The Laplacian-energy-like invariant of the graph G is defined as LEL = LEL(G)= Σi=1n-1√μi. Lower and upper bounds for LEL are obtained, in terms of n, number of edges, maximum vertex degree, and number of spanning trees. © 2013 Elsevier Inc. All rights reserved.-
dc.rightsinfo:eu-repo/semantics/restrictedAccess-
dc.sourceLinear Algebra and Its Applications-
dc.titleOn the Laplacian-energy-like invariant-
dc.typearticle-
dc.identifier.doi10.1016/j.laa.2013.05.002-
dc.identifier.scopus2-s2.0-84890119620-
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

443

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.