Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12300
Title: On the Laplacian-energy-like invariant
Authors: das, kinkar
Gutman, Ivan
Cevik A.
Issue Date: 2014
Abstract: Let G be a connected graph of order n with Laplacian eigenvalues μ1≥μ2≥⋯≥μn-1> μn=0. The Laplacian-energy-like invariant of the graph G is defined as LEL = LEL(G)= Σi=1n-1√μi. Lower and upper bounds for LEL are obtained, in terms of n, number of edges, maximum vertex degree, and number of spanning trees. © 2013 Elsevier Inc. All rights reserved.
URI: https://scidar.kg.ac.rs/handle/123456789/12300
Type: article
DOI: 10.1016/j.laa.2013.05.002
ISSN: 0024-3795
SCOPUS: 2-s2.0-84890119620
Appears in Collections:Faculty of Science, Kragujevac

Page views(s)

443

Downloads(s)

10

Files in This Item:
File Description SizeFormat 
PaperMissing.pdf
  Restricted Access
29.86 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.