Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/12680
Title: Semiconductor gas sensors: Materials, technology, design, and application
Authors: Nikolic, Maria
Milovanović, Vladimir
Ž. VASILJEVIĆ S.
Stamenković Z.
Issue Date: 2020
Abstract: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
URI: https://scidar.kg.ac.rs/handle/123456789/12680
Type: review
DOI: 10.3390/s20226694
ISSN: 1424-8220
SCOPUS: 2-s2.0-85096613609
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

448

Downloads(s)

28

Files in This Item:
File Description SizeFormat 
10.3390-s20226694.pdf2.99 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons