Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/17509
Full metadata record
DC FieldValueLanguage
dc.rights.licenseCC0 1.0 Universal*
dc.contributor.authorMarkovic, Dusan-
dc.contributor.authorPešović, Uroš-
dc.contributor.authorTomić, Dalibor-
dc.contributor.authorStevović, Vladeta-
dc.date.accessioned2023-03-28T10:04:50Z-
dc.date.available2023-03-28T10:04:50Z-
dc.date.issued2023-
dc.identifier.isbn9788687611887en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/17509-
dc.description.abstractWeeds are one of the most important factors affecting agricultural production. Environmental pollution caused by the application of herbicides over the entire agricultural land surface is becoming more and more obvious. Accurately distinguishing crops from weeds by machines and achieving precise treatment of only weed species is one possibility to reduce the use of herbicides. However, precise treatment depends on the precise identification and location of weeds and cultivated plants. The aim of the work was to describe and point out the importance of deep learning models for the detection and classification of weeds, in order to enhance their application in real conditions.en_US
dc.language.isoenen_US
dc.publisherUniverzitet u Kragujevcu, Agronomski fakultet u Čačkuen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceXXVIII savetovanje o biotehnologiji sa međunarodnim učešćem-
dc.subjectagricultureen_US
dc.subjectimage processingen_US
dc.subjectartificial neural networken_US
dc.subjectweed detectionen_US
dc.subjectweed controlen_US
dc.titleCROP WEEDS DETECTION USING NEURAL NETWORK MODELSen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/SBT28.093Men_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Agronomy, Čačak

Page views(s)

468

Downloads(s)

169

Files in This Item:
File Description SizeFormat 
11-SoBT2023_Marković D. et al.pdf258.11 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons