Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/17979
Full metadata record
DC FieldValueLanguage
dc.rights.licenseAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.contributor.authorKomatina, Nikola-
dc.contributor.authorTadić, Danijela-
dc.contributor.authorĐurić, Goran-
dc.contributor.authorAleksić, Aleksandar-
dc.date.accessioned2023-06-01T09:33:07Z-
dc.date.available2023-06-01T09:33:07Z-
dc.date.issued2023-
dc.identifier.issn0954-4089en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/17979-
dc.description.abstractThe aim of this research is to propose the two-stage model to select a set of failures that need to be eliminated or reduced which leads to improved reliability and effectiveness of the manufacturing process in the automotive industry. In the first stage, uncertainties under the relative importance of risk factors and costs of manufacturing process downtime due to failure are modeled by type 2 fuzzy sets. The weights vector of risk factors is obtained by analytical hierarchical Process which is extended with type 2 fuzzy sets. Evaluation of risk factors at the level of each identified failure is based on failure mode and effect analysis which is widely used in practice. Determining the set of failures to be eliminated is set as a knapsack problem. The linear fitness function is defined as the ratio of the overall risk priority index and total costs. Maintenance costs incurred due to the realization of failure are limited by the available budget and in this knapsack problem are presented by a linear inequality. The solution to this problem is found by using the Genetic Algorithm and Variable Neighborhood Search. The model is verified with real-life data originating from automotive companies that exist in Serbia. Authors have managed to obtain suitable results on different knapsack problem instances. It is shown that the enhancement of the manufacturing process can be based on the proposed model.en_US
dc.language.isoenen_US
dc.publisherSAGE Publishingen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourceProceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering-
dc.subjectFailure mode and effect analysisen_US
dc.subjectselection set of failuresen_US
dc.subjecttype 2 fuzzy setsen_US
dc.subjectgenetic algorithmen_US
dc.subjectvariable neighborhood searchen_US
dc.titleDetermination of manufacturing process failures priority under type 2 fuzzy environment: Application of genetic algorithm and Variable neighborhood searchen_US
dc.typearticleen_US
dc.description.versionAccepted for publishingen_US
dc.identifier.doi10.1177/09544089231160510en_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

360

Downloads(s)

24

Files in This Item:
File Description SizeFormat 
09544089231160510.pdf1.19 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons