Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19054
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorSong, Xiaona-
dc.contributor.authorWu, Nana-
dc.contributor.authorSong, Shuai-
dc.contributor.authorZhang, Yijun-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2023-10-13T12:40:45Z-
dc.date.available2023-10-13T12:40:45Z-
dc.date.issued2023-
dc.identifier.issn0925-2312en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19054-
dc.description.abstractThe pinning-like bipartite synchronization is investigated for reaction–diffusion neural networks with cooperative-competitive interactions in this paper. First, a dural event-triggered control algorithm based on the time–space sampled-data scheme is employed to further decrease the transmission resources’ consumption. Then, some sufficient conditions that guarantee the bipartite synchronization for the target neural networks with the signed graph are obtained by virtue of the Lyapunov method, Halanay’s inequalities, and the pinning control technique. Moreover, new weighted integral inequalities are introduced to get higher upper bounds than what traditional inequality produces. Finally, a numerical simulation result is given to validate the advantages of the proposed method for realizing bipartite synchronization.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceNeurocomputing-
dc.subjectPinning-like bipartite synchronizationen_US
dc.subjectCooperative-competitive networksen_US
dc.subjectReaction–diffusion neural networksen_US
dc.subjectTime–space sampled-data schemeen_US
dc.subjectDual event-triggered mechanismen_US
dc.titleBipartite synchronization for cooperative-competitive neural networks with reaction–diffusion terms via dual event-triggered mechanismen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.1016/j.neucom.2023.126498en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

5611

Број преузимања

16

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
song2023bipartite.pdf
  Ограничен приступ
89.38 kBAdobe PDFПогледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.