Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/19270
Full metadata record
DC FieldValueLanguage
dc.rights.licenseCC0 1.0 Universal*
dc.contributor.authorMarovac, Ulfeta A.-
dc.contributor.authorMemić, Lejlija M.-
dc.contributor.authorAvdić, Aldina R.-
dc.contributor.authorDjordjević, Natasa Z.-
dc.contributor.authorDolićanin, Zana Ć.-
dc.contributor.authorBabic, Goran-
dc.date.accessioned2023-11-03T09:48:27Z-
dc.date.available2023-11-03T09:48:27Z-
dc.date.issued2023-
dc.identifier.isbn9788682172024en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19270-
dc.description.abstractIn this paper, the application of machine learning methods on large data sets with numerous features was investigated, with a focus on the identification of critical features in order to reduce the data and produce more accurate results. The research discusses feature extraction techniques for classifying two biomedical data sets with 62 and 71 features, respectively. The results were compared and presented using four classification techniques. The acquired results demonstrate that the selected important features typically produce more accurate results, or at least the same results while reducing the size of the data set and making data collecting easier.en_US
dc.language.isoenen_US
dc.publisherUniversity of Kragujevac, Institute for Information Technologiesen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.source2nd International Conference on Chemo and BioInformatics-
dc.subjectfeature selectionen_US
dc.subjectmachine learningen_US
dc.subjectbiomedical data classificationen_US
dc.subjectpregnant womenen_US
dc.titleSelecting critical features for biomedical data classificationen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/ICCBI23.136Men_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Medical Sciences, Kragujevac

Page views(s)

368

Downloads(s)

22

Files in This Item:
File Description SizeFormat 
2nd-ICCBIKG- str 136-139.pdf401.66 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons