Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19270
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.rights.licenseCC0 1.0 Universal*
dc.contributor.authorMarovac, Ulfeta A.-
dc.contributor.authorMemić, Lejlija M.-
dc.contributor.authorAvdić, Aldina R.-
dc.contributor.authorDjordjević, Natasa Z.-
dc.contributor.authorDolićanin, Zana Ć.-
dc.contributor.authorBabic, Goran-
dc.date.accessioned2023-11-03T09:48:27Z-
dc.date.available2023-11-03T09:48:27Z-
dc.date.issued2023-
dc.identifier.isbn9788682172024en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19270-
dc.description.abstractIn this paper, the application of machine learning methods on large data sets with numerous features was investigated, with a focus on the identification of critical features in order to reduce the data and produce more accurate results. The research discusses feature extraction techniques for classifying two biomedical data sets with 62 and 71 features, respectively. The results were compared and presented using four classification techniques. The acquired results demonstrate that the selected important features typically produce more accurate results, or at least the same results while reducing the size of the data set and making data collecting easier.en_US
dc.language.isoenen_US
dc.publisherUniversity of Kragujevac, Institute for Information Technologiesen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.source2nd International Conference on Chemo and BioInformatics-
dc.subjectfeature selectionen_US
dc.subjectmachine learningen_US
dc.subjectbiomedical data classificationen_US
dc.subjectpregnant womenen_US
dc.titleSelecting critical features for biomedical data classificationen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/ICCBI23.136Men_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Medical Sciences, Kragujevac

Број прегледа

1084

Број преузимања

47

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
2nd-ICCBIKG- str 136-139.pdf401.66 kBAdobe PDFСличица
Погледајте


Ова ставка је заштићена лиценцом Креативне заједнице Creative Commons