Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/19325
Full metadata record
DC FieldValueLanguage
dc.rights.licenseCC0 1.0 Universal*
dc.contributor.authorGeroski, Tijana-
dc.contributor.authorFilipovic, Nenad-
dc.date.accessioned2023-11-07T07:23:09Z-
dc.date.available2023-11-07T07:23:09Z-
dc.date.issued2023-
dc.identifier.isbn9788682172024en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19325-
dc.description.abstractMachine learning (ML) leverages sophisticated computation and inference to generate insights, enables the system to reason and learn, and empowers clinician decision making. Starting from data (medical images, biomarkers, patients’ data) and using powerful tools such as convolutional neural networks, classification and regression models, etc., it aims at creating personalized models, adapted to each patient, which can be applied in real clinical practice as a decision support system to doctors.en_US
dc.language.isoenen_US
dc.publisherUniversity of Kragujevac, Institute for Information Technologiesen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.source2nd International Conference on Chemo and BioInformatics-
dc.subjectimage processingen_US
dc.subjectdeep learningen_US
dc.subjectdata miningen_US
dc.subjectmedical expert systemsen_US
dc.titleApplication of Machine Learning Algorithms in Medical Data Processingen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.identifier.doi10.46793/ICCBI23.379Gen_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Engineering, Kragujevac

Page views(s)

359

Downloads(s)

18

Files in This Item:
File Description SizeFormat 
2nd-ICCBIKG- str 379-381.pdf455.21 kBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons