Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/19598
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorMorato, Marcelo Menezes-
dc.contributor.authorStojanović, Vladimir-
dc.date.accessioned2023-12-13T12:51:36Z-
dc.date.available2023-12-13T12:51:36Z-
dc.date.issued2021-
dc.identifier.issn2767-8946en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/19598-
dc.description.abstractSuccessful identification procedures are undoubtedly important for accurate model description and the consequent implementation of control strategies. Linear Parameter Varying (LPV) models are nowadays standard for control design purposes and powerful identification techniques accordingly available. Anyhow, recent advances have brought to focus the class of Nonlinear Parameter Varying (NLPV) models, which keep some nonlinearities embedded to the formulation. Identification tools for this latter class are still not available. Therefore, this paper proposes a novel method for the robust identification of stochastic NLPV systems, considering that the nonlinear parameter part is a priori known and obeys a Lipschitz condition. The method is based on a modified extended Masreliez-Martin filter and yields the joint estimation of both NLPV systems states and model parameters. The method manages the stochasticity of the system by considering the presence of measurement outliers with non-Gaussian distributions. Results considering real data from a vehicle suspension system are presented in order to demonstrate the consistency of the proposed method.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.sourceMathematical Modelling and Control-
dc.subjectextended robust filteren_US
dc.subjectidentificationen_US
dc.subjectnonlinear parameter varying systemsen_US
dc.subjectstate and parameter estimationen_US
dc.subjectnon-Gaussian noisesen_US
dc.titleA robust identification method for stochastic nonlinear parameter varying systemsen_US
dc.typearticleen_US
dc.description.versionPublisheden_US
dc.identifier.doi10.3934/mmc.2021004en_US
dc.type.versionPublishedVersionen_US
Налази се у колекцијама:Faculty of Mechanical and Civil Engineering, Kraljevo

Број прегледа

842

Број преузимања

103

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
MMC_2023.pdf3.01 MBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.