Please use this identifier to cite or link to this item: https://scidar.kg.ac.rs/handle/123456789/20945
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJordovic Pavlovic, Miroslava-
dc.contributor.authorKupusinac, Aleksandar-
dc.contributor.authorPopović, Marica-
dc.date.accessioned2024-06-25T08:48:54Z-
dc.date.available2024-06-25T08:48:54Z-
dc.date.issued2019-
dc.identifier.isbn978-86-83573-95-0en_US
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/20945-
dc.description.abstractThis paper presents a classification model for microphone type recognition in photoacoustic experiment. The classification model is obtained by applying a multilayer perceptron network on a large dataset of simulated experimental values. The model satisfies the basic requirements of a photoacoustic experiment: accuracy, reliability and real time operations.en_US
dc.language.isoenen_US
dc.publisherCollege of Applied Sciences Užiceen_US
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.source11th International Scientific Conference Science and Higher Education in Function of Sustainable Development-SED, 24-25 May 2019, Mećavnik, Mokra Gora, Serbiaen_US
dc.subjectclassificationen_US
dc.subjectphotoacousticsen_US
dc.subjectmicrophoneen_US
dc.subjectmachine learningen_US
dc.subjectMLPen_US
dc.titleCLASSIFICATION MODEL FOR MICROPHONE TYPE RECOGNITIONen_US
dc.typeconferenceObjecten_US
dc.description.versionPublisheden_US
dc.type.versionPublishedVersionen_US
Appears in Collections:Faculty of Mechanical and Civil Engineering, Kraljevo

Page views(s)

387

Downloads(s)

9

Files in This Item:
File Description SizeFormat 
SED2019_Jordovic_Pavlovic.pdf298.63 kBAdobe PDFThumbnail
View/Open


Items in SCIDAR are protected by copyright, with all rights reserved, unless otherwise indicated.